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Reference frame, coordinate system, initial/reference time, ref-
erence configuration: description helping auxiliary elements.

Objectivity: ‘equations must have a physical content indepen-
dently of these auxiliary elements’ – formulation is controversial.

A safe solution: to use the frame free description of spacetime
and of physical quantities – introduced by Weyl [1], mentioned
by Arnold, elaborated by Matolcsi [2], standard in general rel-
ativity, not yet widespread elsewhere.

Even the Galilean case (hereafter) needs spacetime: r′ = r−Vt.

Objective: can be formulated without auxiliary elements.

Kinematic quantities for solid continua

A continuum: a 3-dimensional smooth manifold C (material
manifold). Its tangent vectors: material vectors. =⇒ material
tensors of various type. Covectors not identified with vectors!
Hereafter, Penrose’s abstract index notation, K: material in-
dex, k̂: spacetime index, k: spacelike spacetime index.
Any material point P ∈ C exists in spacetime along a world line:
at a given time t, P is at spacetime point r(t, P ). The partial
derivatives will be denoted by overdot and ∇K , respectively.
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World lines in Galilean spacetime; Galilean spacetime vectors

World line gradient: Jk
K := ∇Krk̂, maps the Euclidean metric

hkl of spacelike spacetime vectors onto C : hKL := Jk
KhklJ

l
L:

the instantaneous metric.

vk̂ := ṙk̂: four-velocity, Lk
L := ∇Lv

k̂ = J̇k
L: velocity gradient.

Solids have an additional structure: gKL: the relaxed metric. In
a relaxed state, hKL = gKL. In general: AK

L :=
(

g−1
)

KMhML:

elastic shape tensor.
{

DK
L

}

:= 1
2
ln
{

AK
L

}

: elastic deformedness.

Thermal expansion: gKL = gKL(T ), α J
I := 1

2

dgIK
dT

(

g−1
)

KJ .

Plastic change rate tensor : Z J
I := 1

2

(dgIK
dt

)

plastic

(

g−1
)

KJ .

Altogether, the kinematic state variable Ai
j evolves as

Ȧi
j = Li

kA
k
j+Ai

k

(

h−1
)

klLm
l hmj−2Ai

k

(

h−1
)

kl
(

αm
l Ṫ+Z m

l

)

hmj .

From mechanics to thermodynamics: isotropic case

The customary balances for mass and linear momentum are
straightforward to rewrite as frame free four-equations:

˙̺ = −̺∇iv
î, ̺v̇î = ∇j

[

(

h−1
)

jkσi
k

]

.

Pure elasticity: σi
j = σi

j

({

Ak
l

}) [

or of
{

Dk
l

}]

, e.g.,

σi
j = Edev

(

Ddev
)

i
j+Esph

(

Dsph
)

i
j

(

Edev = 2G, Esph = 3K
)

;

σi
j originates from a specific elastic energy eel

({

Di
j

})

, an

isotropic scalar function of
{

Di
j

}

, as σi
j = ̺ deel

dD
j

i

. As a conse-

quence, ̺ėel = σi
j

(

LS
)

j
i.

Thermal effects: eel = eel

(

T,
{

Di
j

})

in general [e.g., in the

above example, Edev = Edev(T ), Esph = Esph(T )]. Also, there
may be thermal expansion: gKL = gKL(T ). Third, in addition

to mechanical power, a heat flux (je)
i
may also be present.

̺ėel = σi
j

(

LS
)

j
i gets generalized to the first law of thermody-

namics in the form ̺ė = −∇i(je)
i
+ σi

j

(

LS
)

j
i.

A specific entropy s
(

T,
{

Di
j

})

should also exist, with a balance

̺ṡ = −∇i(js)
i
+ πs, where we assume (js)

i
= 1

T
(je)

i
.

Under the requirement that thermal expansion is reversible (i.e.,
gives no contribution to entropy production πs), we find

e = eth(T ) + eel + T
(

1
̺
σ
j
k

(

h−1
)

klα m
l hmj −

∂eel
∂T

)

, (1)

s = sth(T ) +
(

1
̺
σ
j
k

(

h−1
)

klα m
l hmj −

∂eel
∂T

)

, (2)

πs =
(

∇i
1
T

)

(je)
i
+ 1

T
σ
j
k

(

h−1
)

klZ m
l hmj . (3)

eth(T ) is related to specific heat, i.e., c|Di
j
=0.

Heat conduction: either (je)
i

= λ
(

g−1
)

ij∇j
1
T

or (je)
i

=

λ
(

h−1
)

ij∇j
1
T

. Ambiguity unseen by conventional kinematics.

A realistic plasticity model (Z j
i ∼ σk

l not so realistic):

Z
j
i = Γhik

(

σ̇dev
)k

l

(

h−1
)

lj , where γ > 0,

Γ = γH
(

(

σdev
)i

j

(

σdev
)j

i
− 2

3
σ2

yield

)

H
(

(

σdev
)i

j

(

σ̇dev
)j

i

)

.

The first Heaviside function H: von Mises type yield criterion.

Positive definite entropy production switches off plastic change
during unloading (second Heaviside function).

Duhamel–Neumann theory, Joule–Thomson effect covered.

Thermal stress even with T independent eel

({

Di
j

})

, via α L
K .

Anisotropy

Means distinguished material directions (tangent vectors of C).
E.g., CI L

J K is constant in σI
J = CI L

J KDK
L.

Constitutive properties expected to be connected to the mate-
rial manifold form (while balances primarily live on spacetime).

Now df

dDK
L

6= 2 df

dAM
L

AM
K 6= 2AL

N
df

dAK
N

! The distinguished

choice is σJ
K = 2̺ ∂eel

∂AI
J

AI
K , with which (1)–(3) remain valid.

Conclusions, outlook

– Successfully applied to evaluate measurements on plastic sam-
ples [4] and in Smoothed-Particle Hydrodynamics numerics

– We could have started with an e(s, {hKL}) (gKL: where e

has a strict minimum in hKL). More abstract, less engineer-
friendly, less application-friendly, harder to express Hooke’s
law, Duhamel–Neumann, plasticity etc.

– Finite-deformation rheology/viscoelasticity can be added
(tensorial internal variable methodology [5])

– Balances can be unified: for four-energy-momentum [6, 7]

– Spacetime aspects of GENERIC and other nonequilibrium
thermodynamical frameworks?

.
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