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The internal variable approach of nonequilibrium thermody-
namics, with a symmetric tensorial internal variable, leads to
a distinguished model family – the Kluitenberg–Verhás model
family [1] (covering the Hooke, Kelvin–Voigt, Maxwell and
Jeffrey models as special cases) – for the rheology of solids.
This family is significant not only from theoretical perspective
but also for experimental applications [2]. GENERIC (Gen-
eral Equation for Nonequilibrium Reversible–Irreversible Cou-
pling) is an attractive general framework for nonequilibrium
thermodynamical models (see, e.g., [3], [4]). Whenever a new
nonequilibrium thermodynamical model emerges, it is advan-
tageous and recommended to check how it suits the frame of
GENERIC. In this poster, we investigate how the internal vari-
able formulation of the Kluitenberg–Verhás model family can
be represented in GENERIC.

The internal variable formulation

We work in the small-strain regime (|ε| � 1) and, for simplicity,
we restrict ourselves to a one-dimensional treatment – the ex-
tension to 3D proves straightforward, with each term containing
the scalar strain ε replaced by two terms containing the tensors
εdeviatoric and εspherical, respectively. Aspects of objectivity and
spacetime compatibility are not addressed here.
In the small-strain regime, density % is constant and the gradi-
ent v′ of the velocity field v is related to the time derivative of
strain: ε̇ = v′ . Again for simplicity, a constant specific heat c
is taken and thermal expansion is neglected, which are simplest
to treat and explicitly indicate if, in addition to v and ε, the
third variable is temperature T ; specific energy is therefore

e (v, ε, T ) = 1
2v

2 + E‖

2% ε
2 + cT , (1)

the middle term being Hookean elastic energy with Young’s
modulus E‖. In parallel, specific entropy is

s (v, ε, T, ξ) = c ln (T/Taux)− 1
2ξ

2 (2)

(with appropriate constant Taux), where the fourth variable, the
internal variable ξ (a symmetric tensor in 3D), enables mod-
elling rheological aspects.
Rheology also manifests itself in stress σ, hence, in mechanics:

%v̇ = σ′ with σ = σel + σnel , σel = E‖ε , (3)

where the internal variable approach ensures positive definite-
ness of the corresponding entropy production terms

(1/T )σnelv
′ − %ξξ̇ (4)

via the equations that give the nonelastic stress part σnel, as
well as the time evolution for ξ, as

σnel = l11v
′ + l12(−%Tξ), ξ̇ = l21v

′ + l22(−%Tξ). (5)

The coefficients lij – later considered constant for simplicity –
must make the matrix lS in the middle of

(
v′ −%Tξ

)(l11 lS12
lS12 l22

)(
v′

−%Tξ

)
(6)

positive definite, implying l11 ≥ 0, l22 ≥ 0, det lS ≥ 0;
note that lS12 = 1

2 (l12 + l21) is related to irreversibility but the
antisymmetric part lA not.

In the GENERIC framework, time evolution of the collec-
tion x of fields is given in terms of operators L, M as

ẋ = L
δE

δx
+M

δS

δx
, (7)

where the term containing functional derivative of the energy
functional E =

∫
%edV represents the reversible part of the dy-

namics while the irreversible part is provided by the one with
the functional derivative of the energy functional S =

∫
%sdV .

Conditions L δEδx = 0, M δS
δx = 0 ensure conservation of energy

and, for reversible dynamics, of entropy.
For our current rheological model, the time evolution of the
variables x =

(
v ε T ξ

)
and the functional derivatives are

ẋ =


1
% (σel + σnel)

′

v′
1
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We have found two possible choices: if

L =


0 1
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0 0 0 0
0 0 0 0

 , (8)

M =
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 (9)

with ∂r denoting spatial derivative, then lA 6= 0 makes M non-
symmetric (but its symmetric part is positive definite). If
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then, using [5], the Jacobi identity is violated for lA 6= 0. Should
we sacrifice Jacobi of L or symmetricity of M?
Also to be done: Instead of T , to use s or e as variable;
to generalize by removing all special assumptions concerning
thermal expansion, finite deformation, elastic energy, etc.

.
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