The internal variable approach of nonequilibrium thermody-
namics, with a symmetric tensorial internal variable, leads to
a distinguished model family — the Kluitenberg—Verhas model
family [1] (covering the Hooke, Kelvin—Voigt, Maxwell and
Jeffrey models as special cases) — for the rheology of solids.
This family is significant not only from theoretical perspective
but also for experimental applications [2]. GENERIC (Gen-
eral Equation for Nonequilibrium Reversible-Irreversible Cou-
pling) is an attractive general framework for nonequilibrium
thermodynamical models (see, e.g., [3], [4]). Whenever a new
nonequilibrium thermodynamical model emerges, it is advan-
tageous and recommended to check how it suits the frame of
GENERIC. In this poster, we investigate how the internal vari-
able formulation of the Kluitenberg—Verhas model family can
be represented in GENERIC.

The internal variable formulation

We work in the small-strain regime (|e| < 1) and, for simplicity,
we restrict ourselves to a one-dimensional treatment — the ex-
tension to 3D proves straightforward, with each term containing
the scalar strain ¢ replaced by two terms containing the tensors
gdeviatoric oy gspherical ‘yegpectively. Aspects of objectivity and

spacetime compatibility are not addressed here.

In the small-strain regime, density o is constant and the gradi-
ent v’ of the velocity field v is related to the time derivative of
strain: € = v’. Again for simplicity, a constant specific heat c
is taken and thermal expansion is neglected, which are simplest
to treat and explicitly indicate if, in addition to v and ¢, the
third variable is temperature T'; specific energy is therefore

e(v,e,T) = 30"+ %52 + T, (1)

the middle term being Hookean elastic energy with Young’s
modulus Ell. In parallel, specific entropy is

S (U7 g, T7 5) =cln (T/Taux) - %52 (2)
(with appropriate constant Ty, ), where the fourth variable, the
internal variable £ (a symmetric tensor in 3D), enables mod-
elling rheological aspects.

Rheology also manifests itself in stress o, hence, in mechanics:

o0 =o' with 0 = Ogl + Opel oa = FElle, (3)
where the internal variable approach ensures positive definite-

ness of the corresponding entropy production terms

(1/T)onev’ — 0EE (4)

via the equations that give the nonelastic stress part ope, as
well as the time evolution for &, as

Onel = l110" + lia(—0T€), € = lo1v" + loo(—0T¢). (5)

The coeflicients [;; — later considered constant for simplicity —
must make the matrix {5 in the middle of

S /
v oy ) () o

positive definite, implying {11 > 0, lye > 0, detl® > 0;
note that I3, = %(112 + l21) is related to irreversibility but the
antisymmetric part {* not.

Nonequilibrium thermodynamical internal variable description of
rheology of solids in the GENERIC framework

Tamds Filop, Mdatyds Sziics (e-mail: fulop@energia.bme.hu)
Department of Energy Engineering, Budapest University of Technology and Economics, Hungary

In the GENERIC framework, time evolution of the collec-
tion x of fields is given in terms of operators L, M as

dx + dx’ M
where the term containing functional derivative of the energy
functional E = [ pedV represents the reversible part of the dy-
namics while the irreversible part is provided by the one with
the functional derivative of the energy functional S = [ psdV.
Conditions L‘;—f =0, M % = 0 ensure conservation of energy
and, for reversible dynamics, of entropy.

For our current rheological model, the time evolution of the
variables x = (v e T §) and the functional derivatives are
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We have found two possible choices: if
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with 0, denoting spatial derivative, then I* # 0 makes M non-
symmetric (but its symmetric part is positive definite). If
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then, using [5], the Jacobi identity is violated for I* # 0. Should
we sacrifice Jacobi of L or symmetricity of M?

Also to be done: Instead of T, to use s or e as variable;
to generalize by removing all special assumptions concerning
thermal expansion, finite deformation, elastic energy, etc.
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